MBC2
Nintendo's MBC2 can be used to address up to 2 Mbit of ROM and 512×4 bit of internal RAM.
Pinout
Pin No. | Name | Type | Comment |
---|---|---|---|
28 | VCC | PWR | I/O 5V supply |
14 | GND | PWR | I/O Ground supply |
21 | VCC_RAM | PWR | RAM supply |
7 | GND_RAM | PWR | RAM Ground supply |
12Template:Ndash9 | D3Template:NdashD0 | I/O | Data Bus |
1 | RD | I | Low-Active Read Enable |
27 | WR | I | Low-Active Write Enable |
26 | CS | I | Low-Active Chip Select |
15 | RESET | I | Low-Active Asynchronous Reset |
20, 22Template:Ndash25, 8, 6Template:Ndash2 | A15Template:NdashA14, A8Template:NdashA0 | I | Address Bus |
16Template:Ndash19 | RA17Template:NdashRA14 | O | Upper ROM Address Lines |
13 | ROM_CS | O | Low-Active ROM Chip Select |
Footprint: SOP127P1200X225-24
Remarks: All I/O pins are protected via diodes to VCC/GND. VCC and VCC_RAM both supply RAM -- probably depending on VCC voltage.
Registers
Write-Accessible Registers:
- 0b00-- ---0 ---- ----: RAM Enable register
- 0b00-- ---1 ---- ----: ROM Bank register
Read-Write-Accessible Registers:
- 0b10-- ---a aaaa aaaa: Internal RAM
RAM Enable Register
XX XX XX XX D3 D2 D1 D0 0x00 @ reset \_________/ \-------- RAM Enable
A value of 0x0A enables RAM access, all other values disable RAM access.
ROM Bank Register
XX XX XX XX D3 D2 D1 D0 0x00 @ reset \_________/ \-------- ROM Bank
ROM Bank selects which bank is mapped to 0x4000-0x7FFF. The written value is zero-adjusted before output on RA17Template:NdashRA14.
Behavior
library IEEE;
use IEEE.std_logic_1164.all;
entity MBC2 is
Port(
RESET_N : in std_logic;
RD_N : in std_logic;
WR_N : in std_logic;
CS_N : in std_logic;
A_HI : in std_logic_vector(15 downto 14);
A : in std_logic_vector(8 downto 0);
D : inout std_logic_vector(3 downto 0);
RA : out std_logic_vector(17 downto 14);
ROM_CS_N : out std_logic;
);
end entity MBC2;
architecture Behavioral of MBC2 is
type ram_type is array(natural range <>) of std_logic_vector(3 downto 0);
signal ram : ram_type(0 to 511);
signal ram_enable_r : std_logic_vector(3 downto 0);
signal rom_bank_r : std_logic_vector(3 downto 0);
signal ram_enable_r_clk : std_logic;
signal rom_bank_r_clk : std_logic;
signal ram_cs_n : std_logic;
signal A_HI_int : std_logic_vector(A_HI'range);
signal A_int : std_logic_vector(A'range);
signal RD_N_int : std_logic;
signal WR_N_int : std_logic;
signal CS_N_int : std_logic;
begin
-----------------------------------------------------------------------
-- Signal Assignments
-----------------------------------------------------------------------
A_HI_int <= A_HI and RESET_N;
A_int <= A and RESET_N;
RD_N_int <= RD_N and RESET_N;
WR_N_int <= WR_N and RESET_N;
CS_N_int <= CS_N and RESET_N;
ROM_CS_N <= '0' when (A_HI_int(15) = '0' and RD_N_int = '0') else
'1';
ram_cs_n <= '0' when ((CS_N_int = '0' and A_HI_int(14) = '0' and ram_enable_r = x"A") or RESET_N = '0') else
'1';
RA <= "0000" when (A_HI_int(14) = '0') else
rom_bank_r when (rom_bank_r /= "0000") else
"0001";
ram_enable_r_clk <= '0' when (A_HI_int = "00" and A_int(8) = '0' and WR_N_int = '0') else
'1';
rom_bank_r_clk <= '0' when (A_HI_int = "00" and A_int(8) = '1' and WR_N_int = '0') else
'1';
-----------------------------------------------------------------------
-- Registers
-----------------------------------------------------------------------
ram_enable_p : process (
RESET_N,
ram_enable_r_clk
)
begin
if (RESET_N = '0') then
ram_enable_r <= x"0";
elsif (rising_edge(ram_enable_r_clk)) then
ram_enable_r <= D;
end if;
end process ram_enable_p;
rom_bank_p : process (
RESET_N,
rom_bank_r_clk
)
begin
if (RESET_N = '0') then
rom_bank_r <= "0000";
elsif (rising_edge(rom_bank_r_clk)) then
rom_bank_r <= D;
end if;
end process rom_bank_p;
ram_p : process (
A_int,
D,
WR_N_int,
RD_N_int,
ram_cs_n
)
begin
-- default tri-state
D <= "ZZZZ";
-- read
if (ram_cs_n = '0' and RD_N_int = '0' and WR_N_int /= '0') then
-- write deasserted
D <= ram(to_integer(unsigned(A_int)));
elsif (ram_cs_n = '0' and RD_N_int = '0') then
-- read and write asserted
D <= "0000";
end if;
-- write
if (rising_edge(not RD_N_int or WR_N_int or ram_cs_n)) then
ram(to_integer(unsigned(A_int))) <= D;
end if;
end process ram_p;
end architecture Behavioral;