Difference between revisions of "MBC1"

From Tauwasser's Wiki
Jump to: navigation, search
(Behavior: syntax highlighting)
m (Mode Register)
 
(10 intermediate revisions by the same user not shown)
Line 18: Line 18:
 
|5V supply
 
|5V supply
 
|-
 
|-
|14
+
|12
 
|GND
 
|GND
 
|PWR
 
|PWR
 
|Ground supply
 
|Ground supply
 
|-
 
|-
|5{{ndash}}1
+
|5–1
|D4{{ndash}}D0
+
|D4–D0
 
|I
 
|I
 
|Data Bus
 
|Data Bus
Line 48: Line 48:
 
|Low-Active Asynchronous Reset
 
|Low-Active Asynchronous Reset
 
|-
 
|-
|21{{ndash}}19
+
|21–19
|A15{{ndash}}A13
+
|A15–A13
 
|I
 
|I
 
|Address Bus
 
|Address Bus
 
|-
 
|-
|18{{ndash}}14
+
|18–14
|RA18{{ndash}}RA14
+
|RA18–RA14
 
|O
 
|O
 
|Upper ROM Address Lines
 
|Upper ROM Address Lines
 
|-
 
|-
|7{{ndash}}6
+
|7–6
|AA14{{ndash}}AA13
+
|AA14–AA13
 
|O
 
|O
 
|Upper ROM/RAM Address Lines
 
|Upper ROM/RAM Address Lines
Line 78: Line 78:
 
|Low-Active ROM Chip Select
 
|Low-Active ROM Chip Select
 
|}
 
|}
 +
 +
Footprint: SOP127P1200X225-24
  
 
{{clear|both}}
 
{{clear|both}}
Line 86: Line 88:
 
Write-Accessible Registers:
 
Write-Accessible Registers:
  
* 0x0000-0x1FFF: RAM Enable register
+
* <tt>0x0000-0x1FFF</tt>: RAM Enable register
* 0x2000-0x3FFF: ROM Bank register
+
* <tt>0x2000-0x3FFF</tt>: ROM Bank register
* 0x4000-0x5FFF: RAM Bank register
+
* <tt>0x4000-0x5FFF</tt>: RAM Bank register
* 0x6000-0x7FFF: Mode register
+
* <tt>0x6000-0x7FFF</tt>: Mode register
  
 
== RAM Enable Register ==
 
== RAM Enable Register ==
Line 111: Line 113:
 
</pre>
 
</pre>
  
ROM Bank selects which bank is mapped to 0x4000-0x7FFF. The written value is zero-adjusted before output on RA18{{ndash}}RA14.
+
ROM Bank selects which bank is mapped to 0x4000-0x7FFF. The written value is zero-adjusted before output on RA18&ndash;RA14.
  
 
== RAM Bank Register ==
 
== RAM Bank Register ==
Line 128: Line 130:
 
<pre>
 
<pre>
 
XX XX XX XX XX XX XX D0    0x00 @ reset
 
XX XX XX XX XX XX XX D0    0x00 @ reset
                    \/
+
                      |
 
                       \--- Mode
 
                       \--- Mode
  
 
</pre>
 
</pre>
  
The mode bit switches between 16&nbsp;Mbit ROM/64&nbsp;kbit SRAM mode ('0') and 4&nbsp;Mbit ROM/256&nbsp;kbit SRAM mode ('1'). When in 16&nbsp;Mbit/64&nbsp;kbit mode, address lines AA14{{ndash}}AA13 switch according to A14. When in 4&nbsp;Mbit/256&nbsp;kbit mode, the upper address lines AA14{{ndash}}AA13 stay fixed regardless of A14.
+
The mode bit switches between 16&nbsp;Mbit ROM/64&nbsp;kbit SRAM mode ('0') and 4&nbsp;Mbit ROM/256&nbsp;kbit SRAM mode ('1'). When in 16&nbsp;Mbit/64&nbsp;kbit mode, address lines AA14&ndash;AA13 switch according to A14. When in 4&nbsp;Mbit/256&nbsp;kbit mode, the upper address lines AA14&ndash;AA13 stay fixed regardless of A14.
  
 
= Behavior =
 
= Behavior =
<syntaxhighlight lang="-"></syntaxhighlight>
+
 
<syntaxhighlight lang="vhdl">
+
<source lang="vhdl">
 
library IEEE;
 
library IEEE;
 
use IEEE.std_logic_1164.all;
 
use IEEE.std_logic_1164.all;
Line 178: Line 180:
 
             '1';
 
             '1';
  
RAM_CS_N <= '0' when (CS_N = '0' and A(14) = '0' and ram_enable_r = x"A" and RESET_N = '1') else
+
RAM_CS_N <= '0' when (CS_N = '0' and A(14) = '0' and ram_enable_r = x"A") else
 
             '1';
 
             '1';
 
RAM_CS <= not RAM_CS_N;
 
RAM_CS <= not RAM_CS_N;
Line 278: Line 280:
  
 
end architecture Behavioral;
 
end architecture Behavioral;
</syntaxhighlight>
+
</source>
 +
 
 +
[[Category:DMG]]

Latest revision as of 21:30, 23 June 2017

Nintendo's MBC1 can be used to address up to 16 Mbit of ROM and 256 kbit of SRAM, depending on the mode MBC1 is set to.

Pinout

MBC1 Pinout.png
Pin No. Name Type Comment
24 VCC PWR 5V supply
12 GND PWR Ground supply
5–1 D4–D0 I Data Bus
11 RD I Low-Active Read Enable
22 WR I Low-Active Write Enable
23 CS I Low-Active Chip Select
10 RESET I Low-Active Asynchronous Reset
21–19 A15–A13 I Address Bus
18–14 RA18–RA14 O Upper ROM Address Lines
7–6 AA14–AA13 O Upper ROM/RAM Address Lines
8 RAM_CS O Low-Active RAM Chip Select
9 RAM_CS O High-Active RAM Chip Select
13 ROM_CS O Low-Active ROM Chip Select

Footprint: SOP127P1200X225-24

Registers

Write-Accessible Registers:

  • 0x0000-0x1FFF: RAM Enable register
  • 0x2000-0x3FFF: ROM Bank register
  • 0x4000-0x5FFF: RAM Bank register
  • 0x6000-0x7FFF: Mode register

RAM Enable Register

XX XX XX XX D3 D2 D1 D0    0x00 @ reset
            \_________/
                 \-------- RAM Enable

A value of 0x0A enables SRAM access, all other values disable SRAM access.

ROM Bank Register

XX XX XX D4 D3 D2 D1 D0    0x00 @ reset
         \____________/
                 \-------- ROM Bank

ROM Bank selects which bank is mapped to 0x4000-0x7FFF. The written value is zero-adjusted before output on RA18–RA14.

RAM Bank Register

XX XX XX XX XX XX D1 D0    0x00 @ reset
                  \___/
                    \----- RAM Bank

RAM Bank selects which bank is mapped to 0xA000-0xBFFF when in mode 4 MBit/256 kbit. When in mode 16 Mbit/64 kbit, it can be used to select the upper two ROM address lines.

Mode Register

XX XX XX XX XX XX XX D0    0x00 @ reset
                      |
                      \--- Mode

The mode bit switches between 16 Mbit ROM/64 kbit SRAM mode ('0') and 4 Mbit ROM/256 kbit SRAM mode ('1'). When in 16 Mbit/64 kbit mode, address lines AA14–AA13 switch according to A14. When in 4 Mbit/256 kbit mode, the upper address lines AA14–AA13 stay fixed regardless of A14.

Behavior

library IEEE;
use IEEE.std_logic_1164.all;

entity MBC1 is
	Port(
		RESET_N  : in  std_logic;
		RD_N     : in  std_logic;
		WR_N     : in  std_logic;
		CS_N     : in  std_logic;
		A        : in  std_logic_vector(15 downto 13);
		D        : in  std_logic_vector(4 downto 0);
		RA       : out std_logic_vector(18 downto 14);
		AA       : out std_logic_vector(14 downto 13);
		ROM_CS_N : out std_logic;
		RAM_CS_N : out std_logic;
		RAM_CS   : out std_logic
	);
end entity MBC1;

architecture Behavioral of MBC1 is
	
signal ram_enable_r : std_logic_vector(3 downto 0);
signal rom_bank_r   : std_logic_vector(4 downto 0);
signal ram_bank_r   : std_logic_vector(1 downto 0);
signal mode_r       : std_logic_vector(0 downto 0);

signal ram_enable_r_clk : std_logic;
signal rom_bank_r_clk   : std_logic;
signal ram_bank_r_clk   : std_logic;
signal mode_r_clk       : std_logic;

begin

-----------------------------------------------------------------------
-- Signal Assignments
-----------------------------------------------------------------------

ROM_CS_N <= '0' when ((A(15) = '0' and RD_N = '0') or RESET_N = '0') else
            '1';

RAM_CS_N <= '0' when (CS_N = '0' and A(14) = '0' and ram_enable_r = x"A") else
            '1';
RAM_CS <= not RAM_CS_N;

RA(18 downto 14) <= "00000"    when (A(14) = '0' or RESET_N = '0') else
                    rom_bank_r when (rom_bank_r /= "00000") else
                    "00001";

AA(14 downto 13) <= "00" when (A(14) = '0' and mode_r = "0") else
                    ram_bank_r;

ram_enable_r_clk <= '0' when (A = "000" and WR_N = '0') else
                    '1';

rom_bank_r_clk <= '0' when (A = "001" and WR_N = '0') else
                  '1';

ram_bank_r_clk <= '0' when (A = "010" and WR_N = '0') else
                  '1';

mode_r_clk <= '0' when (A = "011" and WR_N = '0') else
              '1';

-----------------------------------------------------------------------
-- Registers
-----------------------------------------------------------------------

ram_enable_p : process (
	RESET_N,
	ram_enable_r_clk
	)
begin

	if (RESET_N = '0') then
	
		ram_enable_r <= x"0";
	
	elsif (rising_edge(ram_enable_r_clk)) then
	
		ram_enable_r <= D(3 downto 0);
	
	end if;

end process ram_enable_p;

rom_bank_p : process (
	RESET_N,
	rom_bank_r_clk
	)
begin

	if (RESET_N = '0') then
	
		rom_bank_r <= "00000";
	
	elsif (rising_edge(rom_bank_r_clk)) then
	
		rom_bank_r <= D;
	
	end if;
	
end process rom_bank_p;

ram_bank_p : process (
	RESET_N,
	ram_bank_r_clk
	)
begin

	if (RESET_N = '0') then
	
		ram_bank_r <= "00";
	
	elsif (rising_edge(ram_bank_r_clk)) then
	
		ram_bank_r <= D(1 downto 0);
	
	end if;
	
end process ram_bank_p;

mode_p : process (
	RESET_N,
	mode_r_clk
	)
begin

	if (RESET_N = '0') then
	
		mode_r <= "0";
	
	elsif (rising_edge(mode_r_clk)) then
	
		mode_r <= D(0 downto 0);
	
	end if;

end process mode_p;

end architecture Behavioral;